Superconvergence and a Posteriori Error Estimates of a Local Discontinuous Galerkin Method for the Fourth-order Initial-boundary Value Problems Arising in Beam Theory
نویسنده
چکیده
Abstract. In this paper, we investigate the superconvergence properties and a posteriori error estimates of a local discontinuous Galerkin (LDG) method for solving the one-dimensional linear fourth-order initial-boundary value problems arising in study of transverse vibrations of beams. We present a local error analysis to show that the leading terms of the local spatial discretization errors for the k-degree LDG solution and its spatial derivatives are proportional to (k+1)-degree Radau polynomials. Thus, the k-degree LDG solution and its derivatives are O(h) superconvergent at the roots of (k + 1)-degree Radau polynomials. Computational results indicate that global superconvergence holds for LDG solutions. We discuss how to apply our superconvergence results to construct efficient and asymptotically exact a posteriori error estimates in regions where solutions are smooth. Finally, we present several numerical examples to validate the superconvergence results and the asymptotic exactness of our a posteriori error estimates under mesh refinement. Our results are valid for arbitrary regular meshes and for P k polynomials with k ≥ 1, and for various types of boundary conditions.
منابع مشابه
Superconvergence of the local discontinuous Galerkin method for linear fourth-order time-dependent problems in one space dimension
In this paper we investigate the superconvergence of local discontinuous Galerkin (LDG) methods for solving one-dimensional linear time-dependent fourth-order problems. We prove that the error between the LDG solution and a particular projection of the exact solution, ēu , achieves ( k+ 2 ) th-order superconvergence when polynomials of degree k (k 1) are used. Numerical experiments with Pk poly...
متن کاملGlobal Convergence of a Posteriori Error Estimates for the Discontinuous Galerkin Method for One-dimensional Linear Hyperbolic Problems
In this paper we study the global convergence of the implicit residual-based a posteriori error estimates for a discontinuous Galerkin method applied to one-dimensional linear hyperbolic problems. We apply a new optimal superconvergence result [Y. Yang and C.-W. Shu, SIAM J. Numer. Anal., 50 (2012), pp. 3110-3133] to prove that, for smooth solutions, these error estimates at a fixed time conver...
متن کاملThe Discontinuous Galerkin Method for Two-dimensional Hyperbolic Problems Part II: A Posteriori Error Estimation
In this manuscript we construct simple, efficient and asymptotically correct a posteriori error estimates for discontinuous finite element solutions of scalar firstorder hyperbolic partial differential problems on triangular meshes. We explicitly write the basis functions for the error spaces corresponding to several finite element spaces. The leading term of the discretization error on each tr...
متن کاملThe Discontinuous Galerkin Method for Two-Dimensional Hyperbolic Problems. Part I: Superconvergence Error Analysis
In this paper we investigate the superconvergence properties of the discontinuous Galerkin method applied to scalar first-order hyperbolic partial differential equations on triangular meshes. We show that the discontinuous finite element solution is O(hp+2) superconvergent at the Legendre points on the outflow edge for triangles having one outflow edge. For triangles having two outflow edges th...
متن کاملA Discontinuous Galerkin Method for Higher-order Differential Equations
In this paper we propose a new discontinuous finite element method for higher-order initial value problems where the finite element solution exhibits an optimal O(∆tp+1) convergence rate in the L2 norm. We further show that the p-degree discontinuous solution of differential equation of order m and its first m−1 derivatives are O(∆t2p+2−m) superconvergent at the end of each step. We also establ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014